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Part I: Some comments.

• For a uniformly continuous function f : A → R, δ can be chosen to depend only on ε and
NOT on the points in A.

• Continuity itself is a pointwise (local) property of a function f , that is, f is continuous or
not at a particular point, and this can be determined by looking at only the values of f(x)
in an (arbitrarily small) neighborhood of that point. When we speak of f being continuous
on an interval, we mean only that f is continuous at every point of this interval.

In contrast, uniform continuity is a global property in the sense that the definition refers to
pairs of points rather than individual points. So we cannot say that whether f is uniformly
continuous at some point x ∈ A.

The mathematical statements that f is continuous on A and the definition that f is uniformly
continuous on A are very similar. Please distinguish the following quantifications:

continuous : ∀x ∈ A∀ε > 0∃δ > 0 ∀y ∈ A; |x− y| < δ =⇒ |f(x)− f(y)| < ε,

uniformly continuous : ∀ε > 0 ∃δ > 0∀x, y ∈ A; |x− y| < δ =⇒ |f(x)− f(y)| < ε.

• Nonuniform continuity criteria 5.4.2 (iii) is very useful for proving that f is not uni-
formly continuous on A. Also refer to Question 3 below.

• (Cantor’s Theorem) The Uniform continuity Theorem 5.4.3 guarantees that a con-
tinuous function f(x) on a closed bounded interval is uniformly continuous. However, when
the interval is not closed and bounded, a continuous function can still be uniformly contin-
uous. In particular, if f is defined on a bounded open interval (a, b), a condition for f to be
uniformly continuous is given in Theorem 5.4.8: lim

x→a+
f(x), lim

x→b−
f(x) both exist and are

finite.

• We have the following chain of inclusions for functions over a closed bounded subset of R:

Lipschitz continuous ⊂ uniformly continuous = continuous

Uniform continuity does not imply Lipschitz continuity. Please refer to Ex 5.4.11 for a
counterexample.

Part II: Exercises from the textbook.

1. (Ex 5.4.7) If f(x) := x and g(x) = sinx, show that both f and g are uniformly continuous
on R, but that their product fg is not uniformly continuous on R.

Remark: The statement will be true if f, g are defined on a bounded subset of R.
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Proof: Notice that

| sinx− sin y| =
∣∣∣∣2 cos

x+ y

2
sin

x− y
2

∣∣∣∣ ≤ ∣∣∣∣2 sin
x− y

2

∣∣∣∣ ≤ 2

∣∣∣∣x− y2

∣∣∣∣ = |x− y|

and thus f, g are both Lipschitz functions on R and consequently uniformly continuous.

Consider xn = 2nπ +
1

n
, yn = 2nπ, then lim

n→∞
(xn − yn) = 0 while

|(fg)(xn)− (fg)(yn)| =
∣∣∣∣(2nπ +

1

n

)
sin

(
2nπ +

1

n

)∣∣∣∣ =

(
2nπ +

1

n

)
sin

1

n
→ 2π.

Therefore, fg is not uniformly continuous on R.

2. In (b)-(d), determine whether the statement is true or false. If true, prove it; if false, give a
counterexample.

(a) (Ex 5.4.10) Prove that if f is uniformly continuous on a bounded subset A of R, then
f is bounded on A.

(b) If f is continuous and bounded on a bounded subset A of R, then f is uniformly
continuous on A.

(c) If f : R→ R is uniformly continuous on R, then f is bounded on R.

(d) If f : R→ R is continuous and bounded on R, then f is uniformly continuous on R.

Remark: Notice that we do not require A to be a closed interval in (a). Also we cannot
obtain boundedness if f is only continuous.

Part III: Additional exercises.

3. (Question 10 on Mar 28 revisited) Suppose A is a bounded subset of R. Show that f
is uniformly continuous on A if and only if for any Cauchy sequences in A, (f(xn)) is also a
Cauchy sequence.

Proof: (=⇒) ∀ε > 0, there exists δ > 0 such that if x, y ∈ A, |x−y| < δ then |f(x)−f(y)| <
ε. Suppose (xn) is a Cauchy sequence in A, then ∃N ∈ N such that if m,n ≥ N then
|xm − xn| < δ and consequently |f(xm) − f(xn)| < ε. Therefore, (f(xn)) is a Cauchy
sequence.

(⇐=) Suppose f is not uniformly continuous, then ∃ε0 > 0 and two sequences in A such that
lim
n→∞

|xn − yn| = 0 while |f(xn)− f(yn)| ≥ ε0 for all n.

Since A is bounded, so are (xn) and (yn). Then by Bolzano-Weierstrass Theorem, (xn) has a
convergent subsequence (xnk

). Suppose lim
k→∞

xnk
= c (which does not need to be in A), then

(ynk
) also converges to c (think about why).

Now we define a sequence (zk) = (xn1 , yn1 , xn2 , yn2 , · · · ). It can be seen that (zk) converges
(to c) and thus is a Cauchy sequence. However, (f(zk)) is not a Cauchy sequence because
|f(xnk

)− f(ynk
)| ≥ ε0, ∀k ∈ N.

Therefore, f must be uniformly continuous on A.



3

Remarks: 1. The conclusion does not hold any more if A is unbounded. You can consider
f(x) = x2 on A = R as a counterexample.

2. We can also see that f is uniformly continuous if and only if for any sequences (xn), (yn) ⊂
A (bounded or unbounded) with lim

n→∞
(xn − yn) = 0, it holds that lim

n→∞
[f(xn) − f(yn)] = 0.

This necessary and sufficient condition is particularly useful for proving that some given
function is not uniformly continuous. See Q1 and Q2d.

4. (Generalization of Continuous Extension Theorem 5.4.8) Let f : R→ R be contin-
uous and lim

x→−∞
f(x) = L1, lim

x→∞
f(x) = L2 exist in R.

(a) Show that f is uniformly continuous on R.

(b) Is the converse of (a) true or false: f is uniformly continuous on R =⇒ both limits at
infinity exist? (Compare with Theorem 5.4.8)

5. (b) and (c) are supplementary properties of periodic functions.

(a) (Ex 5.4.14) A function f : R→ R is said to be periodic on R if their exists a number
p > 0 such that f(x+p) = f(x) for all x ∈ R. Prove that a continuous periodic function
on R is bounded and uniformly continuous on R.

(b) p is called a period of f . If there exists a least positive constant T among the periods
of f(x), it is called the fundamental (primitive, basic, prime) period.

• A continuous function may not have a fundamental period (constant function).

• A non-constant function may not have a fundamental period. Dirichlet function
is an example, for which any positive rational number is a period.

• However, a non-constant continuous function must have a fundamental period.

(c) The sum of two period functions may not be a periodic function. Consider sinx+sin πx.

Proof: (a) Notice that f is continuous and consequently uniformly continuous on [0, p] =⇒
|f(x)| < M,∀x ∈ [0, p] for some M > 0. So ∀x ∈ R, ∃n ∈ N such that x − np ∈ [0, p) and
|f(x)| = |f(x− np)| < M .

Therefore, f is bounded on R.

Also, ∀ε > 0,∃δ1 > 0 such that if x, y ∈ [0, p], |x − y| < δ1 then |f(x) − f(y)| < ε

2
. Let

δ = min(δ1, p). If |x− y| < δ (WLOG, we assume x ≤ y), then there are two cases:

1◦. x, y ∈ [np, np+ p] for some n, then |f(x)− f(y)| = |f(x− np)− f(y − np)| < ε

2
.

2◦. x ∈ [np− p, np), y ∈ [np, np+ p] for some n. Then

= |f(x− np)− f(0)|+ |f(y − np)− f(0)|

≤ ε

2
+
ε

2
= ε.

In either case we have |f(x)− f(y)| < ε and consequently f is uniformly continuous on R.

6. (Optional, compare with 4(b)) Suppose f : A = [0,∞)→ R is uniformly continuous on
A and lim

n→∞
f(n+ h) = L for any h ∈ [0, 1]. Show that lim

x→∞
f(x) = L.
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Proof: ∀ε > 0,∃δ > 0 such that whenever |x− y| < δ it follows |f(x)− f(y)| < ε

2
.

For this δ > 0, we can take m ∈ N such that m >
1

δ
=⇒ 0 <

1

m
< δ. Let xk =

k

m
, k =

0, 1, 2, · · · ,m and then from the assumption we have lim
n→∞

f(n + xk) = L, i.e., there exists

N ∈ N such that ∀n ≥ N, |f(n+ xk)− L| < ε

2
.

Now ∀x > N we can write x = [x] + (x− [x]). Since x− [x] ∈ [0, 1), there exists k such that

|x− [x]− xk| ≤
1

m
< δ. Therefore (notice that [x] ≥ N),

|f(x)− L| ≤ |f(x)− f([x] + xk)|+ |f([x] + xk)− L| < ε

2
+
ε

2
= ε

and we conclude that lim
x→∞

f(x) = L.

7. Suppose f(x) is a Lipschitz continuous on [a,∞), a > 0. Show that
f(x)

x
is uniformly

continuous on [a,∞).

Proof: 1◦. From assumption, there exists M1 > 0 such that

|f(x)− f(y)| ≤M1|x− y|,∀x, y ≥ a.

In particular,

|f(x)− f(a)| ≤M1|x− a| =⇒ |f(x)| ≤M1(x− a) + |f(a)|

=⇒ |f(x)|
x
≤M1

x− a
x

+
|f(a)|
x
≤M1 +

|f(a)|
a

.

2◦. Therefore, for any x, y ≥ a we have∣∣∣∣f(x)

x
− f(y)

y

∣∣∣∣ =

∣∣∣∣yf(x)− xf(y)

xy

∣∣∣∣ =

∣∣∣∣(y − x)f(x)− x(f(y)− f(x))

xy

∣∣∣∣
≤ |y − x||f(x)|+ x|f(y)− f(x)|

xy

=
|y − x|
y

· |f(x)|
x

+
|f(y)− f(x)|

y

≤ |y − x|
a

· |f(x)|
x

+
|f(y)− f(x)|

a

≤ |y − x|
a

·
(
M1 +

|f(a)|
a

)
+
M1|x− y|

a

= M |x− y|

where M =
2aM1 + |f(a)|

a2
. Therefore,

f(x)

x
is Lipschitz continuous and consequently uni-

formly continuous on [a,∞).


