THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050 Mathematical Analysis (Spring 2018) Tutorial on Apr 18

If you find any mistakes or typos, please email them to ypyang@math.cuhk.edu.hk

Part I: Some comments.

- For a uniformly continuous function $f : A \to \mathbb{R}$, δ can be chosen to depend only on ε and NOT on the points in A.
- Continuity itself is a **pointwise (local)** property of a function f, that is, f is continuous or not at a particular point, and this can be determined by looking at only the values of f(x) in an (arbitrarily small) neighborhood of that point. When we speak of f being continuous on an interval, we mean only that f is continuous at every point of this interval.

In contrast, uniform continuity is a **global** property in the sense that the definition refers to **pairs** of points rather than individual points. So we cannot say that whether f is uniformly continuous at some point $x \in A$.

The mathematical statements that f is continuous on A and the definition that f is uniformly continuous on A are very similar. Please distinguish the following quantifications:

continuous : $\forall x \in A \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in A; \ |x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon,$ uniformly continuous : $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in A; \ |x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon.$

- Nonuniform continuity criteria 5.4.2 (iii) is very useful for proving that f is not uniformly continuous on A. Also refer to Question 3 below.
- (Cantor's Theorem) The Uniform continuity Theorem 5.4.3 guarantees that a continuous function f(x) on a closed bounded interval is uniformly continuous. However, when the interval is not closed and bounded, a continuous function can still be uniformly continuous. In particular, if f is defined on a bounded open interval (a, b), a condition for f to be uniformly continuous is given in Theorem 5.4.8: $\lim_{x\to a+} f(x)$, $\lim_{x\to b-} f(x)$ both exist and are finite.
- We have the following chain of inclusions for functions over a **closed bounded** subset of \mathbb{R} :

Lipschitz continuous \subset uniformly continuous = continuous

Uniform continuity does not imply Lipschitz continuity. Please refer to **Ex 5.4.11** for a counterexample.

Part II: Exercises from the textbook.

1. (Ex 5.4.7) If f(x) := x and $g(x) = \sin x$, show that both f and g are uniformly continuous on \mathbb{R} , but that their product fg is not uniformly continuous on \mathbb{R} .

Remark: The statement will be true if f, g are defined on a bounded subset of \mathbb{R} .

Proof: Notice that

$$|\sin x - \sin y| = \left| 2\cos\frac{x+y}{2}\sin\frac{x-y}{2} \right| \le \left| 2\sin\frac{x-y}{2} \right| \le 2\left| \frac{x-y}{2} \right| = |x-y|$$

and thus f, g are both Lipschitz functions on \mathbb{R} and consequently uniformly continuous. Consider $x_n = 2n\pi + \frac{1}{n}$, $y_n = 2n\pi$, then $\lim_{n \to \infty} (x_n - y_n) = 0$ while

$$|(fg)(x_n) - (fg)(y_n)| = \left| \left(2n\pi + \frac{1}{n} \right) \sin \left(2n\pi + \frac{1}{n} \right) \right| = \left(2n\pi + \frac{1}{n} \right) \sin \frac{1}{n} \to 2\pi.$$

Therefore, fg is not uniformly continuous on \mathbb{R} .

- 2. In (b)-(d), determine whether the statement is true or false. If true, prove it; if false, give a counterexample.
 - (a) (Ex 5.4.10) Prove that if f is uniformly continuous on a bounded subset A of \mathbb{R} , then f is bounded on A.
 - (b) If f is continuous and bounded on a bounded subset A of \mathbb{R} , then f is uniformly continuous on A.
 - (c) If $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous on \mathbb{R} , then f is bounded on \mathbb{R} .
 - (d) If $f : \mathbb{R} \to \mathbb{R}$ is continuous and bounded on \mathbb{R} , then f is uniformly continuous on \mathbb{R} .

Remark: Notice that we do not require A to be a closed interval in (a). Also we cannot obtain boundedness if f is only continuous.

Part III: Additional exercises.

3. (Question 10 on Mar 28 revisited) Suppose A is a bounded subset of \mathbb{R} . Show that f is uniformly continuous on A if and only if for any Cauchy sequences in A, $(f(x_n))$ is also a Cauchy sequence.

Proof: (\Longrightarrow) $\forall \varepsilon > 0$, there exists $\delta > 0$ such that if $x, y \in A, |x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$. Suppose (x_n) is a Cauchy sequence in A, then $\exists N \in \mathbb{N}$ such that if $m, n \geq N$ then $|x_m - x_n| < \delta$ and consequently $|f(x_m) - f(x_n)| < \varepsilon$. Therefore, $(f(x_n))$ is a Cauchy sequence.

(\Leftarrow) Suppose f is not uniformly continuous, then $\exists \varepsilon_0 > 0$ and two sequences in A such that $\lim_{n \to \infty} |x_n - y_n| = 0$ while $|f(x_n) - f(y_n)| \ge \varepsilon_0$ for all n.

Since A is bounded, so are (x_n) and (y_n) . Then by Bolzano-Weierstrass Theorem, (x_n) has a convergent subsequence (x_{n_k}) . Suppose $\lim_{k\to\infty} x_{n_k} = c$ (which does not need to be in A), then (y_{n_k}) also converges to c (think about why).

Now we define a sequence $(z_k) = (x_{n_1}, y_{n_1}, x_{n_2}, y_{n_2}, \cdots)$. It can be seen that (z_k) converges (to c) and thus is a Cauchy sequence. However, $(f(z_k))$ is not a Cauchy sequence because $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon_0$, $\forall k \in \mathbb{N}$.

Therefore, f must be uniformly continuous on A.

Remarks: 1. The conclusion does not hold any more if A is unbounded. You can consider $f(x) = x^2$ on $A = \mathbb{R}$ as a counterexample.

2. We can also see that f is uniformly continuous if and only if for any sequences $(x_n), (y_n) \subset A$ (bounded or unbounded) with $\lim_{n\to\infty} (x_n - y_n) = 0$, it holds that $\lim_{n\to\infty} [f(x_n) - f(y_n)] = 0$. This necessary and sufficient condition is particularly useful for proving that some given function is not uniformly continuous. See Q1 and Q2d.

- 4. (Generalization of Continuous Extension Theorem 5.4.8) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and $\lim_{x \to -\infty} f(x) = L_1$, $\lim_{x \to \infty} f(x) = L_2$ exist in \mathbb{R} .
 - (a) Show that f is uniformly continuous on \mathbb{R} .
 - (b) Is the converse of (a) true or false: f is uniformly continuous on $\mathbb{R} \Longrightarrow$ both limits at infinity exist? (Compare with Theorem 5.4.8)
- **5**. (b) and (c) are supplementary properties of periodic functions.
 - (a) (Ex 5.4.14) A function $f : \mathbb{R} \to \mathbb{R}$ is said to be **periodic** on \mathbb{R} if their exists a number p > 0 such that f(x+p) = f(x) for all $x \in \mathbb{R}$. Prove that a continuous periodic function on \mathbb{R} is bounded and uniformly continuous on \mathbb{R} .
 - (b) p is called a period of f. If there exists a least positive constant T among the periods of f(x), it is called the **fundamental (primitive, basic, prime) period**.
 - A continuous function may not have a fundamental period (constant function).
 - A non-constant function may not have a fundamental period. **Dirichlet function** is an example, for which any positive rational number is a period.
 - However, a non-constant continuous function must have a fundamental period.
 - (c) The sum of two period functions may not be a periodic function. Consider $\sin x + \sin \pi x$.

Proof: (a) Notice that f is continuous and consequently uniformly continuous on $[0, p] \Longrightarrow$ $|f(x)| < M, \forall x \in [0, p]$ for some M > 0. So $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}$ such that $x - np \in [0, p)$ and |f(x)| = |f(x - np)| < M.

Therefore, f is bounded on \mathbb{R} .

Also, $\forall \varepsilon > 0, \exists \delta_1 > 0$ such that if $x, y \in [0, p], |x - y| < \delta_1$ then $|f(x) - f(y)| < \frac{\varepsilon}{2}$. Let $\delta = \min(\delta_1, p)$. If $|x - y| < \delta$ (WLOG, we assume $x \leq y$), then there are two cases:

1°. $x, y \in [np, np + p]$ for some *n*, then $|f(x) - f(y)| = |f(x - np) - f(y - np)| < \frac{\varepsilon}{2}$.

 $\mathbf{2}^{\circ}\!.\ x\in[np-p,np), y\in[np,np+p]$ for some n. Then

$$= |f(x - np) - f(0)| + |f(y - np) - f(0)|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

In either case we have $|f(x) - f(y)| < \varepsilon$ and consequently f is uniformly continuous on \mathbb{R} .

6. (Optional, compare with 4(b)) Suppose $f : A = [0, \infty) \to \mathbb{R}$ is uniformly continuous on A and $\lim_{n \to \infty} f(n+h) = L$ for any $h \in [0, 1]$. Show that $\lim_{x \to \infty} f(x) = L$. **Proof:** $\forall \varepsilon > 0, \exists \delta > 0$ such that whenever $|x - y| < \delta$ it follows $|f(x) - f(y)| < \frac{\varepsilon}{2}$.

For this $\delta > 0$, we can take $m \in \mathbb{N}$ such that $m > \frac{1}{\delta} \Longrightarrow 0 < \frac{1}{m} < \delta$. Let $x_k = \frac{k}{m}$, $k = 0, 1, 2, \dots, m$ and then from the assumption we have $\lim_{n \to \infty} f(n + x_k) = L$, i.e., there exists $N \in \mathbb{N}$ such that $\forall n \ge N$, $|f(n + x_k) - L| < \frac{\varepsilon}{2}$.

Now $\forall x > N$ we can write x = [x] + (x - [x]). Since $x - [x] \in [0, 1)$, there exists k such that $|x - [x] - x_k| \le \frac{1}{m} < \delta$. Therefore (notice that $[x] \ge N$),

$$|f(x) - L| \le |f(x) - f([x] + x_k)| + |f([x] + x_k) - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

and we conclude that $\lim_{x \to \infty} f(x) = L$.

7. Suppose f(x) is a Lipschitz continuous on $[a, \infty)$, a > 0. Show that $\frac{f(x)}{x}$ is uniformly continuous on $[a, \infty)$.

Proof: 1°. From assumption, there exists $M_1 > 0$ such that

$$|f(x) - f(y)| \le M_1 |x - y|, \forall x, y \ge a.$$

In particular,

$$|f(x) - f(a)| \le M_1 |x - a| \Longrightarrow |f(x)| \le M_1 (x - a) + |f(a)|$$
$$\Longrightarrow \frac{|f(x)|}{x} \le M_1 \frac{x - a}{x} + \frac{|f(a)|}{x} \le M_1 + \frac{|f(a)|}{a}$$

2°. Therefore, for any $x, y \ge a$ we have

$$\begin{aligned} \left| \frac{f(x)}{x} - \frac{f(y)}{y} \right| &= \left| \frac{yf(x) - xf(y)}{xy} \right| = \left| \frac{(y - x)f(x) - x(f(y) - f(x))}{xy} \right| \\ &\leq \frac{|y - x||f(x)| + x|f(y) - f(x)|}{xy} \\ &= \frac{|y - x|}{y} \cdot \frac{|f(x)|}{x} + \frac{|f(y) - f(x)|}{y} \\ &\leq \frac{|y - x|}{a} \cdot \frac{|f(x)|}{x} + \frac{|f(y) - f(x)|}{a} \\ &\leq \frac{|y - x|}{a} \cdot \left(M_1 + \frac{|f(a)|}{a} \right) + \frac{M_1|x - y|}{a} \\ &= M|x - y| \end{aligned}$$

where $M = \frac{2aM_1 + |f(a)|}{a^2}$. Therefore, $\frac{f(x)}{x}$ is Lipschitz continuous and consequently uniformly continuous on $[a, \infty)$.